Processos de Engenharia Alimentar I

Curso: Licenciatura em Eng Alimentar

3º Semestre

Idioma: Português

Docente(s): Suzana Ferreira Dias, Jorge Gominho

1.Objectivos:

Aplicar os conceitos de operação unitária e de processo à engenharia alimentar. Aprender a integrar conceitos adquiridos em UC anteriores sobre transferência de massa e energia, no estudo das seguintes operações unitárias: moenda, sedimentação, centrifugação, filtração clássica, secagem e evaporação. Aprender a modelar as diferentes operações, a dimensionar o equipamento utilizado, em diferentes casos de estudo de processos da indústria alimentar.

2. Programa:

Conceito de operação unitária e sua importância no estudo dos processos industriais. Caracterização de partículas sólidas; moenda. Operações unitárias que envolvem apenas transferência de massa: sedimentação livre; centrifugação; filtração clássica. Operações unitárias que envolvem transferência de massa e/ou de calor: secagem (clássica) e psicrometria; permutadores de calor; evaporação (efeito simples e múltiplo em co e contracorrente).

4. Bibliografia:

Bibliografia Principal

Bayazitoglu, Y., Ozisik, M.N. (1988), Elements of Heat Transfer, McGraw-Hill International Editions, New York

Earle, R.L. (1985), Unit Operations in Food Processing, Pergamon Press.

http://www.nzifst.org.nz/unitoperations/httrtheory.htm

Geankoplis, C.J. (1986), *Transport Processes and Unit Operations*, 3º Edição, Prentice-Hall International, Inc.

Bibliografia Complementar

McCabe, W.L., Smith, J.C., Harriot, P. (1993) *Unit Operations of Chemical Engineering*, McGraw-Hill, Inc., 5ª Edição, New York.

5. Regras de Avaliação:

Para obter frequência, é necessário:

Presença em 75 % das aulas totais (17 aulas + Aula do trabalho prático)

Realizar **trabalho laboratorial**, apresentar os resultados oralmente e em forma de relatório escrito (**máximo 10 páginas**).

O **relatório** deverá ser entregue impresso até dia **5 de Janeiro de 2026.** O Relatório de Trabalho Laboratorial representa 20% da nota final da U.C.

- O Exame final será realizado na época de exame e representa 80% da nota final.

Datas de exame: 1ª chamada- 16 de Janeiro de 2026

2ª chamada - 30 de Janeiro de 2026

3ª chamada - 5 Fev 2026

Para aprovação na disciplina é necessária a **nota mínima de 9,5 valores** tanto no **exame** como no

relatório do trabalho laboratorial.

Programa Detalhado:

1. Introdução

- 1.1. Conceitos de Operação Unitária e de processo
- 1.2. Classificação das operações unitárias e exemplos em diferentes sectores industriais.

2. Caracterização de partículas sólidas e redução de dimensões

- 2.1. Caracterização e propriedades das partículas sólidas
- 2.2. Objectivos da redução de dimensões
- 2.3. Forças envolvidas na operação de moenda
- 2.4. Eficiência da moenda
- 2.5. Cálculo do consumo energético da operação (Leis de Kick, de Rittinger e de Bond)
- 2.6. Tipos de moinhos
- 2.7. Separação de partículas e classificação por dimensões (análises diferencial e cumulativa)

3. Operações de Separação

- 3.1. Sedimentação
 - 3.1.1. Princípios gerais
 - 3.1.2. Sedimentação livre
 - 3.1.3. Decantadores: intermitentes e contínuos; espessadores

3.2. Centrifugação

- 3.2.1. Princípios gerais
- 3.2.2. Tipos de Centrífugas
- 3.2.3. Dimensionamento de centrífugas
- 3.2.4. Ciclones

3.3. Filtração Clássica

- 3.3.1. Princípios gerais
- 3.3.2. Filtração a caudal constante e a pressão constante
- 3.3.3. Tipos de filtros
- 3.3.4. Dimensionamento de filtros
- 3.3.5. Lavagem do bolo de filtração

4. Permutadores de calor

- 4.1. Classificação
- 4.2. Perfis de temperatura nos diferentes tipos de permutadores
- 4.3. Cálculo dos coeficientes globais de transferência de calor nos permutadores; contabilização das incrustações.

- 4.4. Dimensionamento de permutadores
 - 4.4.1. Método da média logarítmica das diferenças de temperatura
 - 4.4.2. Factor de correcção para permutadores de passes múltiplos e de fluxos cruzados
- 4.4.3. Método da eficiência (ε-NTU)

5. Secagem

- 5.1. Teoria-base da secagem: os três estados da água; necessidades de calor na vaporização; transferência de calor e de massa na secagem
- 5.2. Psicrometria: Cartas psicrométricas: sua utilização
- 5.3. Teor de humidade de equilíbrio dos materiais
- 5.4. Curvas de velocidade de secagem
- 5.5. Métodos de cálculo do período de secagem a velocidade constante
- 5.6. Métodos de cálculo do período de secagem a velocidade decrescente
- 5.7. Equipamento de secagem

6. Evaporação

- 6.1. Definição e objectivos
- 6.2. Tipos de evaporadores e modos operatórios
- 6.3. Coeficientes globais de transferência de calor nos evaporadores
- 6.4. Elevação do ponto de ebulição: regra de Dürhing
- 6.5. Dimensionamento dos evaporadores de efeito simples
- 6.6. Dimensionamento dos evaporadores de efeito múltiplo
- 6.7. Recompressão de vapor
- 6.8. Evaporação de materiais termo-sensíveis.

Calendarização

Ano lectivo: 2025/2026

8 de setembro a 24 de outubro de 2025 e 3 de novembro a 19 de dezembro de 2025

Unidade Curricular: Processos de Engenharia Alimentar I;

Curso: _Engenharia Alimentar

Responsável da UC: Prof. Suzana Ferreira Dias; Ciclo de Estudos: 1º ciclo

Horário lectivo:

2º feira: 9:00--10:30 h (sala 2.24) 5º feira: 8:30-11:00 h (sala 2.25)

Horário de atendimento aos alunos: combinado entre os docentes e os alunos

Docentes que leccionam: Suzana Ferreira Dias, Jorge Gominho

Semana	Aula	Data	Sumário	Nome e assinatura
1	1	8 Set	Apresentação das regras e do	Suzana Ferreira-
			programa da UC; conceito de	Dias
			Operações Unitárias e exemplos	
	2	11 Set (P)	Caracterização e propriedades das	Jorge Gominho
			partículas sólidas	
2	3	15 Set (T)	Separação de partículas e	Jorge Gominho
			classificação por dimensões.	
	4	18 Set (P)	Trituração: objectivos e forças	Jorge Gominho
			envolvidas. Cálculo do consumo	
			energético e eficiência da	
			trituração; tipos de moinhos.	
3	5	22 Set (T)	Centrifugação: fundamentos	Jorge Gominho
			teóricos e problemas de aplicação a	
			casos de estudo.	
	6	25 Set (P)	Centrifugação (continuação)	Jorge Gominho
4	7	29 Set (T)	Sedimentação livre: fundamentos	Suzana Ferreira-
			teóricos e problemas de aplicação.	Dias
	8	2 Out (T)	Permutadores de calor: revisões	Jorge Gominho
			sobre a transferência de calor;	
			fundamentos e modo de	
			funcionamento dos permutadores.	
5	9	6 Out (P)	Permutadores de calor: métodos de	Jorge Gominho
			dimensionamento. Problemas de	
			aplicação a permutadores simples e	
			de passe múltiplo;	
			dimensionamento pelo método da	
			eficiência	
	10	9 Out (T)	Filtração Clássica: introdução;	Suzana Ferreira-
			filtração a caudal constante e a	Dias
			pressão constante; problemas de	
			aplicação.	

6	11	13 Out (P)	Tipos de filtros e seu dimensionamento; lavagem do bolo de filtração.	Suzana Ferreira- Dias
	12	16 Out (T)	Secagem: fundamentos teóricos: teor de humidade de equilíbrio dos materiais.	Suzana Ferreira- Dias
7	13	20 Out (P)	Utilização das cartas psicrométricas: problemas de aplicação	Suzana Ferreira- Dias
	14	23 Out (T)	Utilização das cartas psicrométricas: problemas de aplicação (continuação)	Suzana Ferreira- Dias
8	15	3 Nov (T)	Cálculo da velocidade de secagem; tipos de secadores e dimensionamento	Suzana Ferreira- Dias
	16	6 Nov (P)	Organização dos trabalhos laboratoriais.	Suzana Ferreira- Dias
9	17	10 Nov (T)	Trabalhos Laboratoriais	Suzana Ferreira- Dias
	18	13 Nov (P)	Trabalhos Laboratoriais	Jorge Gominho
10	19	17 Nov (T)	Trabalhos Laboratoriais	Suzana Ferreira- Dias
	20	20 Nov (P)	Tratamento dos resultados laboratoriais	Jorge Gominho
11	21	24 Nov (T)	Tratamento dos resultados laboratoriais	Jorge Gominho/ Suzana Ferreira- Dias
	22	27 Nov(P)	Evaporação: fundamentos teóricos e objectivos da operação; tipos de evaporadores e modo de funcionamento	Suzana Ferreira- Dias
12	23	1 Dez (T)	FERIADO	
	24	4 Dez (P)	Apresentação de trabalhos.	Suzana Ferreira- Dias
13	25	8 Dez (T)	FERIADO	
	26	11 Dez (P)	Esclarecimento de dúvidas	Jorge Gominho
14	27	15 Dez	Evaporação: dimensionamento de evaporadores de efeito simples e de efeito múltiplo.	Suzana Ferreira- Dias
	28	18 Dez	Evaporação: dimensionamento de evaporadores de efeito múltiplo (conclusão); elevação do ponto de ebulição; regra de Durhing	Suzana Ferreira- Dias